Skip to main content
Illustration of melting point of lithium chloride, which is shown with green and blue structures in two rows.

Scientists have developed a new machine learning approach that accurately predicted critical and difficult-to-compute properties of molten salts, materials with diverse nuclear energy applications. 

A color-enhanced 3D laser scan of a large concrete slab in a housing development, showing surface variations in shades of blue, green, yellow, and purple. Surrounding structures and terrain are rendered in black and white. The image was captured using the FLAT tool’s 360-degree scanning technology.

Researchers at ORNL have developed a tool that gives builders a quick way to measure, correct and certify level foundations. FLAT, or the Flat and Level Analysis Tool, examines a 360-degree laser scan of a construction site using ORNL-developed segmentation algorithms and machine learning to locate uneven areas on a concrete slab. 

Scientist standing beside mass spectrometry equipment in a laboratory, with instrumentation panels and analysis tools visible in the background

Robert “Bob” Hettich, an ORNL Corporate Fellow, is a pioneer in using mass spectrometry to uncover how microbes interact within complex environments and influence larger systems like plants and humans. A founder of the field of metaproteomics, he leads research that supports bioenergy, environmental resilience and health through advanced protein analysis.

Researcher is sitting in bio lab surrounded with plants

Dave Weston studies how microorganisms influence plant health and stress tolerance, using the Advanced Plant Phenotyping Laboratory to accelerate research on plant-microbe interactions and develop resilient crops for advanced fuels, chemicals and 

Autonomous Configurable Component Evaluation Power Test platform, called ACCEPT, enabling automated characterization of semiconductor devices.

Researchers at Oak Ridge National Laboratory have developed a new automated testing capability for semiconductor devices, which is newly available to researchers and industry partners in the Grid Research Integration and Deployment Center.

ORNL researcher Phong Le poses for a photo outside on a walkway bridge over the pond. The photo is framed with brown and green plants

Phong Le is a computational hydrologist at ORNL who is putting his skills in hydrology, numerical modeling, machine learning and high-performance computing to work quantifying water-related risks for humans and the environment. 

Chad sitting in a lab coat at a desk

Chad Parish, a senior researcher at ORNL, studies materials at the atomic level to improve nuclear reactors. His work focuses on fusion and fission energy, using microscopy and collaborating with experts to advance materials for extreme environments.

ORNL researcher is sitting on a desk with his hands crossed, three screens behind him depicting work in satellites and space. Pictures on the left and right are orange in color while the middle photo is blue and reflects an image from space

From during his early years at NASA to his current role a researcher and group leader, Peter Fuhr has pushed the boundaries of optical and sensor technology. Fuhr’s path is marked by wacky creativity that can’t confine itself to challenges in a single field. No idea is too far out to try out — and so many of them work that Fuhr has a host of inventions and start-ups under his belt.

Larry York is sitting in front of a computer screen showing an image of plant phenotyping

The Advanced Plant Phenotyping Laboratory at ORNL utilizes robotics, multi-modal imaging, and AI to enhance understanding of plant genetics and interactions with microbes. It aims to connect genes to traits for advancements in bioenergy, agriculture, and climate resilience. Senior scientist Larry York highlights the lab's capabilities and the insights from a new digital underground imaging system to improve biomass feedstocks for bioenergy and carbon storage.

pulsed laser deposition setup

In a game-changing study, ORNL scientists developed a deep learning model — a type of artificial intelligence that mimics human brain function — to analyze high-speed videos of plasma plumes during a process called pulsed laser deposition.