Skip to main content
Illustration of melting point of lithium chloride, which is shown with green and blue structures in two rows.

Scientists have developed a new machine learning approach that accurately predicted critical and difficult-to-compute properties of molten salts, materials with diverse nuclear energy applications. 

A color-enhanced 3D laser scan of a large concrete slab in a housing development, showing surface variations in shades of blue, green, yellow, and purple. Surrounding structures and terrain are rendered in black and white. The image was captured using the FLAT tool’s 360-degree scanning technology.

Researchers at ORNL have developed a tool that gives builders a quick way to measure, correct and certify level foundations. FLAT, or the Flat and Level Analysis Tool, examines a 360-degree laser scan of a construction site using ORNL-developed segmentation algorithms and machine learning to locate uneven areas on a concrete slab. 

Image of the Frontier supercomputer in black with Frontier spelled out across the cabinets in front.

Research teams at the Department of Energy’s Oak Ridge National Laboratory received computing resource awards to train and test AI foundation models for science. A total of six ORNL projects were awarded allocations from the National Artificial Intelligence Research Resource, or NAIRR, pilot and the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program to train their AI models.

Green and blue background of a graphic image that says Honors and Awards

Mariam Kiran, a quantum research scientist at the Department of Energy’s Oak Ridge National Laboratory, was recently honored as a finalist at the British Council’s Study U.K. Alumni Awards 2025, which celebrate the achievements of U.K. alumni worldwide.

Research scientist Daniel Jacobson is standing with his arms crossed with a dark black backdrop

Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology. 

ORNL R&D data scientist Max Pasini is posing for a portrait with a blue background, black button up long sleeve shirt

Massimiliano (Max) Lupo Pasini, an R&D data scientist from ORNL, was awarded the National Energy Research Scientific Computing Center’s High Performance Computing Achievement Award for High Impact Scientific Achievement for his work in “Groundbreaking contributions to scientific machine learning, particularly through the development of HydraGNN.”

Profile photo of man in short sleeve button up shirt with blue and grey feather pattern.

Joel Brogan, who leads the Multimodal Sensor Analytics group at Oak Ridge National Laboratory, has been elevated to senior membership in the Institute of Electrical and Electronics Engineers.

7 people from ORBIT research team accept their award from Tom Tabor (middle)

ORNL has been recognized in the 21st edition of the HPCwire Readers’ and Editors’ Choice Awards, presented at the 2024 International Conference for High Performance Computing, Networking, Storage and Analysis in Atlanta, Georgia.

Graphic representation of ai model that identifies proteins

Researchers used the world’s fastest supercomputer, Frontier, to train an AI model that designs proteins, with applications in fields like vaccines, cancer treatments, and environmental bioremediation. The study earned a finalist nomination for the Gordon Bell Prize, recognizing innovation in high-performance computing for science.

Pictured here are 9 scientists standing in a line in front of the frontier supercomputer logo/computer

Researchers at Oak Ridge National Laboratory used the Frontier supercomputer to train the world’s largest AI model for weather prediction, paving the way for hyperlocal, ultra-accurate forecasts. This achievement earned them a finalist nomination for the prestigious Gordon Bell Prize for Climate Modeling.