Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 338 Results

Two ORNL researchers inspect carbon fiber materials - one black rectangular sheet and one see-through sheet of film.

Researchers at ORNL have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites – an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials. 

A color-enhanced 3D laser scan of a large concrete slab in a housing development, showing surface variations in shades of blue, green, yellow, and purple. Surrounding structures and terrain are rendered in black and white. The image was captured using the FLAT tool’s 360-degree scanning technology.

Researchers at ORNL have developed a tool that gives builders a quick way to measure, correct and certify level foundations. FLAT, or the Flat and Level Analysis Tool, examines a 360-degree laser scan of a construction site using ORNL-developed segmentation algorithms and machine learning to locate uneven areas on a concrete slab. 

ORNL researcher is sitting at a transmission electron microscopy board in a lab at ORNL

As the focus on energy resiliency and competitiveness increases, the development of advanced materials for next-generation, commercial fusion reactors is gaining attention. A recent paper examines a promising candidate for these reactors: ultra-high-temperature ceramics, or UHTCs.

Illustration of the GRETA detector, a spherical array of metal cylinders. The detector is divided into two halves to show the inside of the machine. Both halves are attached to metal harnesses, displayed against a black and green cyber-themed background.

Analyzing massive datasets from nuclear physics experiments can take hours or days to process, but researchers are working to radically reduce that time to mere seconds using special software being developed at the Department of Energy’s Lawrence Berkeley and Oak Ridge national laboratories.  

Group of 11 people, 9 standing and two sitting are posing for a photo in front of University of Oklahoma red and white backdrop with UO logo. The two in front are shaking hands

The University of Oklahoma and Oak Ridge National Laboratory, the Department of Energy’s largest multi-program science and energy laboratory, have entered a strategic collaboration to establish a cutting-edge additive manufacturing center. 

ORNL researcher Fehmi Yasin poses for a photo outside with green trees blurred in the background

Fehmi Yasin, inspired by a high school teacher, now researches quantum materials at Oak Ridge National Laboratory, aiming to transform information technology with advanced imaging techniques.

Four researchers are standing next to a research rector that is glowing blue

A team from ORNL, joined by university students, recently traveled to the Ohio State University Research Reactor to conduct a novel experiment on nuclear thermal rocket fuel coatings — one that could help propel NASA’s astronauts to Mars faster and more efficiently. 

Jairus Hines standing in the lab with a drone on the wall behind him

Jairus Hines, an electronics and unmanned systems technician at ORNL, works with airborne, waterborne and ground-based drones. As part of the lab’s Autonomous Systems group, he applies "low and slow" drone technology to radiation detection for national security missions.

Three visitors are standing off to the right, listening to a researcher speak to them in the Molten Salt Lab at ORNL

During a recent visit to ORNL, several OASA (IE&E) representatives explored the ORNL’s leadership in advanced nuclear energy development to inform the design and construction of a microreactor to power mission-critical facilities at two Army bases. 

Three researchers are in a lab pointing to a square machine in the middle of the lab.

Professionals from government and industry gathered at ORNL for the Nondestructive Assay Holdup Measurements Training Course for Nuclear Criticality Safety, a hands-on training in nondestructive assay, a technique for detecting and quantifying holdup without disturbing operations.