Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- William Carter
- Alex Roschli
- Amir K Ziabari
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Diana E Hun
- Luke Meyer
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Rob Moore II
- Stephen M Killough
- Vincent Paquit
- Adam Stevens
- Alex Walters
- Amy Elliott
- Benjamin Lawrie
- Bryan Maldonado Puente
- Cameron Adkins
- Chengyun Hua
- Corey Cooke
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gina Accawi
- Gurneesh Jatana
- Isha Bhandari
- Jeremy Malmstead
- Jiaqiang Yan
- John Holliman II
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Mark M Root
- Matthew Brahlek
- Michael Borish
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Petro Maksymovych
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.