Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- William Carter
- Adam Willoughby
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Hongbin Sun
- Luke Meyer
- Prashant Jain
- Rishi Pillai
- Adam Stevens
- Alex Walters
- Amy Elliott
- Brandon Johnston
- Bruce A Pint
- Cameron Adkins
- Charles Hawkins
- Erin Webb
- Evin Carter
- Ian Greenquist
- Ilias Belharouak
- Isha Bhandari
- Jeremy Malmstead
- Jiheon Jun
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Marie Romedenne
- Michael Borish
- Nate See
- Nithin Panicker
- Oluwafemi Oyedeji
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Xianhui Zhao
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and