Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Adam Willoughby
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Josh Michener
- Kuntal De
- Kyle Kelley
- Rishi Pillai
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Brandon Johnston
- Brian Sanders
- Bruce A Pint
- Charles Hawkins
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Gerd Duscher
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jiheon Jun
- Joanna Tannous
- John F Cahill
- Kitty K Mccracken
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marti Checa Nualart
- Mengdawn Cheng
- Nandhini Ashok
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Sai Mani Prudhvi Valleti
- Serena Chen
- Soydan Ozcan
- Stephen Jesse
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz
- Yong Chae Lim
- Zhili Feng

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called