Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Peter Wang
- Andrzej Nycz
- Vlastimil Kunc
- Blane Fillingim
- Chris Masuo
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Steven Guzorek
- Sudarsanam Babu
- Thomas Feldhausen
- Trevor Aguirre
- Craig Blue
- Eddie Lopez Honorato
- J.R. R Matheson
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Ryan Heldt
- Tyler Gerczak
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Beth L Armstrong
- Brian Gibson
- Brittany Rodriguez
- Callie Goetz
- Cameron Adkins
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Hobbs
- Christopher Ledford
- Chris Tyler
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- David Olvera Trejo
- Dustin Gilmer
- Fred List III
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jordan Wright
- Keith Carver
- Liam White
- Luke Meyer
- Matt Kurley III
- Michael Borish
- Michael Kirka
- Rangasayee Kannan
- Richard Howard
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Sana Elyas
- Sarah Graham
- Scott Smith
- Subhabrata Saha
- Thomas Butcher
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vipin Kumar
- William Carter
- William Peter
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The technologies provide additively manufactured thermal protection system.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.