Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Amit K Naskar
- Bo Shen
- Praveen Cheekatamarla
- Vishaldeep Sharma
- James Manley
- Jaswinder Sharma
- Kyle Gluesenkamp
- Logan Kearney
- Michael Toomey
- Mike Zach
- Nihal Kanbargi
- Andrew F May
- Annetta Burger
- Arit Das
- Ben Garrison
- Benjamin L Doughty
- Brad Johnson
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Easwaran Krishnan
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gautam Malviya Thakur
- Holly Humphrey
- Hongbin Sun
- Hsin Wang
- James Gaboardi
- James Klett
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- Joe Rendall
- John Lindahl
- Justin Griswold
- Kashif Nawaz
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Melanie Moses-DeBusk Debusk
- Muneeshwaran Murugan
- Nedim Cinbiz
- Padhraic L Mulligan
- Robert E Norris Jr
- Sandra Davern
- Santanu Roy
- Sumit Gupta
- Todd Thomas
- Tony Beard
- Uvinduni Premadasa
- Vera Bocharova
- Xiuling Nie
- Yifeng Hu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.