Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- William Carter
- Alex Roschli
- Amir K Ziabari
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Philip Bingham
- Soydan Ozcan
- Vincent Paquit
- Xianhui Zhao
- Adam Stevens
- Alex Walters
- Amy Elliott
- Cameron Adkins
- Diana E Hun
- Erin Webb
- Evin Carter
- Gina Accawi
- Gurneesh Jatana
- Halil Tekinalp
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Mark M Root
- Michael Borish
- Michael Kirka
- Obaid Rahman
- Oluwafemi Oyedeji
- Peter Wang
- Philip Boudreaux
- Rangasayee Kannan
- Roger G Miller
- Sanjita Wasti
- Sarah Graham
- Sudarsanam Babu
- Tyler Smith
- William Peter
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.