Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Hongbin Sun
- Ruhul Amin
- Soydan Ozcan
- Xianhui Zhao
- Alex Roschli
- Dali Wang
- David L Wood III
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Halil Tekinalp
- Jaswinder Sharma
- Jeremy Malmstead
- Jian Chen
- Junbin Choi
- Kitty K Mccracken
- Lu Yu
- Marm Dixit
- Mengdawn Cheng
- Nate See
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Prashant Jain
- Sanjita Wasti
- Thien D. Nguyen
- Tyler Smith
- Wei Zhang
- Yaocai Bai
- Zhijia Du
- Zhili Feng

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.