Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Brian Post
- Michael Kirka
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Cameron Adkins
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Daniel Adams
- David Nuttall
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Isha Bhandari
- James Haley
- Jessica Moehl
- Liam White
- Mark M Root
- Michael Borish
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Taylor Hauser
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.