Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Rangasayee Kannan
- Sudarsanam Babu
- Amit Shyam
- Lauren Heinrich
- Michael Kirka
- Thomas Feldhausen
- Vincent Paquit
- Ying Yang
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Andres Marquez Rossy
- Bruce A Pint
- Bruce Moyer
- Bryan Lim
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- David Nuttall
- Debjani Pal
- Gordon Robertson
- James Haley
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mike Zach
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Bingham
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.