Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam M Guss
- Amit Shyam
- Josh Michener
- Ryan Dehoff
- Alex Plotkowski
- Liangyu Qian
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Amir K Ziabari
- Andrzej Nycz
- Austin L Carroll
- Diana E Hun
- Isaiah Dishner
- James A Haynes
- Jeff Foster
- John F Cahill
- Kuntal De
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Serena Chen
- Stephen M Killough
- Sumit Bahl
- Udaya C Kalluri
- Xiaohan Yang
- Adam Stevens
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Biruk A Feyissa
- Brian Post
- Bryan Maldonado Puente
- Carrie Eckert
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Corey Cooke
- Dean T Pierce
- Debjani Pal
- Gerald Tuskan
- Gerry Knapp
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Joanna Tannous
- John Holliman II
- Jovid Rakhmonov
- Kyle Davis
- Mark M Root
- Michael Kirka
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Paul Abraham
- Peeyush Nandwana
- Rangasayee Kannan
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Vilmos Kertesz
- William Alexander
- William Peter
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.