Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Hongbin Sun
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Eddie Lopez Honorato
- Kyle Kelley
- Ryan Heldt
- Tyler Gerczak
- Anton Ievlev
- Arpan Biswas
- Christopher Hobbs
- Gerd Duscher
- Ilias Belharouak
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Kurley III
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rodney D Hunt
- Ruhul Amin
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Sumner Harris
- Thien D. Nguyen
- Utkarsh Pratiush
- Vishaldeep Sharma

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.