Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Amit K Naskar
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Andrzej Nycz
- Jaswinder Sharma
- Josh Michener
- Kuntal De
- Kyle Kelley
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Austin Carroll
- Benjamin L Doughty
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Christopher Bowland
- Clay Leach
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Gerd Duscher
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Paul Abraham
- Robert E Norris Jr
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Serena Chen
- Stephen Jesse
- Sumit Gupta
- Sumner Harris
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.