Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Kyle Kelley
- Aaron Werth
- Alexander I Wiechert
- Ali Passian
- Anton Ievlev
- Arpan Biswas
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Emilio Piesciorovsky
- Gary Hahn
- Gerd Duscher
- Govindarajan Muralidharan
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Joseph Olatt
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Mark Provo II
- Marti Checa Nualart
- Matt Vick
- Mingyan Li
- Nance Ericson
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oscar Martinez
- Raymond Borges Hink
- Rob Root
- Rose Montgomery
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Srikanth Yoginath
- Stephen Jesse
- Sumner Harris
- Thomas R Muth
- Utkarsh Pratiush
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Yarom Polsky

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.