Adam M Guss

Adam M Guss

Genetic and Metabolic Engineer

Bio

Dr. Adam Guss is a Genetic and Metabolic Engineer at Oak Ridge National Laboratory and Joint Faculty Assistant Professor in the Bredesen Center at the University of Tennessee at Knoxville. Dr. Guss received his Ph.D. from the University of Illinois at Urbana – Champaign in the Department of Microbiology studying the electron transport pathways used by members of the Archaea to produce methane. He was a Microbial Sciences Initiative Postdoctoral Fellow at Harvard University studying the phylogenetic and metabolic diversity of non-cultured and rarely cultured bacteria present in the lungs of cystic fibrosis patients. He then worked in Lee Lynd’s research group at Dartmouth College as a Postdoctoral Researcher and Research Scientist as a member of the BioEnergy Science Center (BESC). His work involved improving genetic tools and metabolic engineering of Clostridium thermocellum for production of biofuels from cellulosic biomass. Dr. Guss’ current research utilizes genetics and synthetic biology to engineer microbes to convert lignocellulosic plant biomass and other waste into liquid fuels and other value-added products. Within BESC, his major research focus is the metabolic engineering of thermophilic, cellulose-degrading bacteria such as C. thermocellum and members of the Caldicellulosiruptor genus for production of liquid fuels. Other projects include genetic modification of Pseudomonas putida for the conversion of lignin-derived aromatic compounds into value-added fuels and chemicals.

Publications

1. Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR*. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metab Eng. (2017) Jun 27;42:175-184. doi: 10.1016/j.ymben.2017.06.011

2. Clarkson S, Elkins J, Guss AM*, and Michener J* – Construction and optimization of a heterologous pathway for protocatechuate catabolism in Escherichia coli enables bioconversion of model aromatic compounds. Appl. Environ. Microbiol. (2017) vol. 83 no. 18 e01313-17. DOI:10.1128/AEM.01313-17

3. Elmore J, Furches A, Wolff G, Gorday K, and Guss AM*. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metabolic Engineering Communications 5 (2017) 1–8. DOI: j.meteno.2017.04.001

4. Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, and Guss AM*. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metabolic Engineering. (2017) 41:182–191. DOI: j.ymben.2017.04.002

5. Verbeke T, Giannone RJ, Klingeman DM, Engle N, Rydzak T, Guss AM, Tschaplinski T, Brown S, Hettich R, and Elkins JG*. “Pentose sugars inhibit metabolism and invoke a cell-to-cell communication response in Clostridium thermocellum" Scientific Reports. (2017) 7: 43355. DOI: 10.1038/srep43355.

6. Biswas R, Wilson CW, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM*. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism. Biotechnol Biofuels. (2017) Jan 3;10:6. DOI: 10.1186/s13068-016-0684-x.

7. Lo J, Murphy SJ, Tian L, Lanahan A, Guss AM, Lynd LR*. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metabolic Engineering. (2017) 71–79. DOI: j.ymben.2016.10.018

8. Wilson CM, Schlachter C, Klingeman DM, Syed MH, Wu C, Guss AM, Brown SD*. Characterization of the Clostridium thermocellum DSM1313 LacI Transcriptional Regulatory Networks. Appl. Environ. Microbiol. (2017) vol. 83 no. 5 e02751-16. DOI: 10.1128/AEM.02751-16.

9. Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone RJ, Hettich RL, Guss AM, Lynd LR*. (2016) Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnology for Biofuels. 2016, 9:116. DOI: 10.1186/s13068-016-0528-8.

10. Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling, J*. (2016) Promiscuous plasmid replication in thermophiles: use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature", Metabolic Engineering Communications, 3:30-38, 2016.

11. Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling, J*. (2015) Cellulosic ethanol production via consolidated bioprocessing at 75 degrees C by engineered Caldicellulosiruptor bescii. Biotechnol Biofuels. 8:163.

12. Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT*. (2015) Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng. 2015 Nov;32:207-19. doi: 10.1016/j.ymben.2015.10.004.

13. Papanek B, Biswas R, Rydzak T; Guss AM*. (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab Eng. 2015 Nov;32:49-54. doi: 10.1016/j.ymben.2015.09.002.

14. Rydzak T, Lynd LR, Guss AM*. (2015) Elimination of formate production in Clostridium thermocellum. J Ind Microbiol Biotechnol. 2015 Sep;42(9):1263-72. doi: 10.1007/s10295-015-1644-3

15. Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC*. (2015) Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng. 2015 Jul 10. pii: S1096-7176(15)00080-4. doi: 10.1016/j.ymben.2015.07.001.

16. Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi S, Guss AM, Lynd LR. (2015) Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and its effect on metabolism. J Bacteriol. 2015 Sep;197(18):2920-9. doi: 10.1128/JB.00347-15.

17. Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM*. (2015) Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 8:20

18. Davison BD, Brandt CC, Guss AM, Kalluri UC, Palumbo AV, Stouder RL, Webb EG. (2015) The impact of biotechnological advances on the future
of US bioenergy. Biofuels, Bioprod. Bioref.; 2015 Sept. 9(5):454-467. DOI: 10.1002/bbb.1549

19. Brown SD*, Sander KB, Wu CW, and Guss AM: Clostridium thermocellum: Engineered for the Production of Bioethanol. In Direct Microbial Conversion of Biomass to Advanced Biofuels. First edition. Edited by Himmel M: Elsevier; 2015

20. Chung D, Cha M, Guss AM, Westpheling, J. (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A. Jun 17; 111(24):8931-6.

21. Currie DH, Guss AM, Herring CD, Giannone RJ, Johnson CM, Lankford PK, Brown SD, Hettich RL, Lynd LR. (2014) Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose. Appl Environ Microbiol. 2014 Jun 6. pii: AEM.00998-14.

22. Biswas R, Prabhu S, Lynd LR, Guss AM. (2014) Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One. 9(2):e86389. doi: 10.1371/journal.pone.0086389.

23. Bhandiwad A, Joe Shaw A, Guss AM, Guseva A, Bahl H, Lynd LR. (2013) Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng. 21:17-25.

24. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J. (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels. 6(1):85.

25. van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR. (2013) Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol. 40(7):725-34.

26. Currie DH, Herring CD, Guss AM, Olson DG, Hogsett DA, Lynd LR. (2013) Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. Biotechnol Biofuels. 6(1):32.

27. Waller BH, Olson DG, Currie DH, Guss AM, Lynd LR. (2013) Exchange of type II dockerin-containing subunits of the Clostridium thermocellum cellulosome as revealed by SNAP-tags. FEMS Microbiol Lett. 338(1):46-53.

28. Podkaminer KK, Guss AM, Trajano HL, Hogsett DA, Lynd LR. (2012) Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions. Appl Environ Microbiol. 78(23):8441-7.

29. Guss AM, Olson DG, Caiazza NC, Lynd LR. (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 5(1):30.

30. Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE. (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels. 5(1):2.

31. Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, and Lynd LR. (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci U S A. 108(33):13752-7.

32. Shao X, Raman B; Zhu M, Mielenz J, Brown S, Guss AM, Lynd LR. (2011) Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol. Appl Microbiol Biotechnol. 92(3):641-52.

33. Guss AM, G Roeselers, ILG Newton, CR Young, V Klepak-Ceraj, S Lory, and CM Cavanaugh. (2011) Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 5(1):20-29.

34. Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR. (2010) Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci U S A. 107(41): 17727-17732.

35. Guss AM, Kulkarni G, Metcalf WW. (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol. 191: 2826-33.

36. Kulkarni G, Kridelbaugh DM, Guss AM, Metcalf WW. (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proc Natl Acad Sci U S A.106:15915-20. 

37. Guss AM, M Rother, JK Zhang, G Kulkarni, WW Metcalf. (2008) New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea. 2:193-203.

38. Forzi L, J Koch, Guss AM, CG Radosevich, WW Metcalf, Hedderich R. (2005) Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. FEBS J. (2005) 272: 4741-53.

39. Guss, AM, B Mukhopadhyay, J Zhang, and WW Metcalf. (2005) Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H2 metabolism between closely related species. Mol Microbiol. 55: 1671-1680.

40. Galagan JE, C Nusbaum, A Roy, MG Endrizzi , P Macdonald, W FitzHugh, S Calvo, R Engels, S Smirnov, D Atnoor, A Brown, N Allen, J Naylor, N Stange-Thomann, K DeArellano, R Johnson, L Linton, P McEwan, K McKernan, J Talamas, A Tirrell, W Ye, A Zimmer, RD Barber, I Cann, DE Graham, DA Grahame, Guss AM, R Hedderich, C Ingram-Smith, HC Kuettner, JA Krzycki, JA Leigh, W Li, J Liu, B Mukhopadhyay, JN Reeve, K Smith, TA Springer, LA Umayam, O White, RH White, E Conway de Macario, JG Ferry, KF Jarrell, H Jing, AJ Macario, I Paulsen, M Pritchett, KR Sowers, RV Swanson, SH Zinder, E Lander, WW Metcalf, B Birren. (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12: 532-542.

41. Larsen RA, MM Wilson, Guss AM, and WW Metcalf. (2002) Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol. 178: 193-201.

Patents

1. Lo J, Guss AM, Van Dijken JP, Shaw IV JA, Olson DG, Herring CD. Engineering an Increase in Ethanol Production by Altering Cofactor Specificity. US Patent 20,140,322,783

2. Brown S, Guss AM, Yang S, Karpinets T, Lynd LR. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol United States Patent US20110287499. Issued Jan 14, 2014.

3. Currie DH, McBride J, Guss AM. Modified cipA gene from Clostridium thermocellum for enhanced genetic stability. US Patent App. 13/265,107, 2010