
Multimodel ensembling improves predictions and considers model uncertainties. In this study, we present a Bayesian Neural Network (BNN) ensemble approach for large-scale precipitation predictions based on a set of climate models.
Multimodel ensembling improves predictions and considers model uncertainties. In this study, we present a Bayesian Neural Network (BNN) ensemble approach for large-scale precipitation predictions based on a set of climate models.
A multidisciplinary team of researchers from Oak Ridge National Laboratory (ORNL) and the University of Texas at Austin developed a new framework for assessing the accuracy of approximate models of microstructure formation.
A team of researchers from Oak Ridge National Laboratory demonstrated highly scalable performance across thousands of GPUs in a newly released version of the open-source MEUMAPPS phase-field simulation framework.
Deep learning models have trained to predict crystallographic and thermodynamic properties of multi-component solid solution alloys, enabling the design of advanced alloys.
Researchers from the Computing and Computational Sciences Directorate (CCSD) at Oak Ridge National Laboratory (ORNL) have developed a distributed implementation of graph convolutional neural networks [1].
Simulations of Inconel 625 microstructure development and constitutive properties during Selective Laser Melting processing were performed utilizing two exascale-capable codes on the pre-exascale Summit supercomputer.