Skip to main content
SHARE
Publication

Raman Fingerprints of Phase Transitions and Ferroic Couplings in van der Waals Multiferroic CuCrP2S6

Publication Type
Journal
Journal Name
The Journal of Physical Chemistry Letters
Publication Date
Page Numbers
4336 to 4345
Volume
16

CuCrP2S6 (CCPS), a type-II multiferroic material, exhibits unique phase transitions involving ferroelectric, antiferroelectric, and antiferromagnetic ordering. In this study, we conduct a comprehensive investigation on the intricate phase transitions and their multiferroic couplings in CCPS across a wide temperature range from 4 to 345 K through Raman spectroscopic measurements down to 5 cm–1. We first assign the observed Raman modes with the support of theoretical calculations and angle-resolved polarized Raman measurements. We further present clear signatures of phase transitions from the analyses of temperature-dependent Raman spectral parameters. Particularly, two low-frequency soft modes are observed at 36.1 cm–1 and 70.5 cm–1 below 145 K, indicating the antiferroelectric to quasi-antiferroelectric transition. Moreover, phonon mode hardening is observed when the temperature increases from 4 to 65 K, suggesting negative thermal expansion (NTE) and strong magnetoelastic coupling below 65 K. These findings advance the understanding of vdW multiferroic CCPS, paving the way for future design and engineering of multiferroicity in cutting-edge technologies, such as spintronics and quantum devices.