Skip to main content
SHARE
Publication

Projections of U. S. GHG Reductions from Nuclear Power New Capacity Based on Historic Levels of Investment...

by Theodore M Besmann
Publication Type
Journal
Journal Name
Energy Policy
Publication Date
Page Numbers
2431 to 2437
Volume
38
Issue
5

Historical rates of capital investment in nuclear plant construction was used as a guide to estimate the rate of future capacity introduction. The magnitude of nuclear capacity was then used to determine the effect on greenhouse gas (GHG) emissions from electrical production in the U.S. to 2050. Total capital investment in nuclear power plant construction for every U.S. nuclear unit from 1964 to 1990 were obtained and the total investment and divided by their construction period to provide a value for possible rate of investment. The total linear rate of capital expenditure over the entire period was determined as well as that for the period of peak construction from 1973 to 1985, $11.5 billion/y and $17.9 billion/y, respectively in 2004$. These were used with a variety of capital cost estimates for nuclear construction to obtain several scenarios for nuclear capacity additions. Total nuclear generation out to 2050 was calculated assuming current plants would be constrained by 60-year operating licenses (i.e., a single 20-year life extension). The effect on nuclear generating capacity was projected and the resultant impact on GHG emissions determined assuming nuclear would directly replace coal-fired generation. It was concluded that actually reductions in emissions would not be experienced until 2038, yet growth in emissions from electrical production would be slowed up through that point. Nuclear energy, therefore cannot have a dramatic short-term effect on emissions, as likely cannot any energy producing technology due to the significant time to introduce large-scale changes. Nuclear power, however, can have a major longer term impact on emissions, particularly under more favorable cost and investment conditions.