Skip to main content
SHARE
Publication

Procedure for Computing Residual Stresses from Neutron Diffraction Data and its Application to Multi-Pass Dissimilar Weld...

by Wei Zhang, Zhili Feng, Paul Crooker
Publication Type
Journal
Journal Name
Science and Technology of Welding and Joining
Publication Date
Page Numbers
254 to 260
Volume
16
Issue
3

Neutron diffraction is a powerful tool for non-destructive measurement of internal residual stresses of welded structures. The conventional approach for determination of residual stresses requires the knowledge of stress-free lattice spacing a priori. For multiple-pass dissimilar metal welds common to nuclear reactor pipeline systems, the stress-free lattice parameter is a complex function of position due to the chemistry inhomogeneity in the weld region and can be challenging to determine experimentally. This paper presents a new approach to calculate the residual stress field in dissimilar welds without the use of stress-free lattice parameter. The theoretical basis takes advantage of the fact that the normal component of welding residual stresses is typically small for thin plate or pipe welds. The applicability of the new approach is examined and justified in a multi-pass dissimilar metal weld consisting of a stainless steel plate and a nickel alloy filler metal. The level of uncertainties associated with this new approach is assessed. Neutron diffraction experiment is carried out to measure the lattice spacing at various locations in the dissimilar weld. A comb-shaped specimen, electro-discharge machined from a companion weld, is used to determine the stress-free lattice spacing. The calculated results from the new approach are consistent with those from the conventional approach. The new approach is found to be a practical method for determining the two in-plane residual stress components in thin plate or pipe dissimilar metal welds.