Abstract
Understanding the formation of uranium alloys with steel is important to advance nuclear technologies involving U metal fuels and machining U metal, and for nuclear forensics applications. No known phase diagram for the quaternary U-(M = Fe, Ni, Cr) system exists. We synthesize samples of U-304 L steel (nominal composition 70.1:18.3:10.4 at% Fe:Cr:Ni) across the U composition range 4.45—63.35 at%U by arc melting under inert conditions. Using the binary UFe phase diagram as a reference, we identify four U-steel alloy phases. We find the known U-Fe analogue phases UM2 and U6M, and two low-U composition phases with nominal compositions UM10 and U2M7. We apply a correlation length analysis to backscatter scanning electron microscopy images of sectioned and polished cross sections to quantify the domain formation length scale. We demonstrate that these depend heavily on the initial composition and range from 30 nm to 1.5 µm. This result, in particular, could be applicable to theoretical predictions of transport properties. Furthering our understanding of U alloy phase formation with important structural elements such as steel primaries is foundational in developing future nuclear technology.Footnote1