Skip to main content
SHARE
Publication

Influence of steric and electronic properties of P2 groups on covalent inhibitor binding to SARS-CoV-2 main protease

Publication Type
Journal
Journal Name
ACS Infectious Diseases
Publication Date
Page Numbers
1697 to 1706
Volume
11
Issue
6

The main protease (MPro) of SARS-CoV-2 is a critical enzyme required for viral replication, making it a prime target for antiviral drug development. Covalent inhibitors, which form a stable interaction with the catalytic C145, have demonstrated strong inhibition of MPro, but the influence of steric and electronic properties of P2 substituents, designed to engage the S2 substrate-binding subsite within the MPro active site, on inhibitor binding affinity remains underexplored. In this study, we design and characterize two hybrid covalent inhibitors, BBH-3 and BBH-4, and present their X-ray crystallographic structures in complex with MPro, providing molecular insights into how their distinct P2 groups, a dichlorobenzyl moiety in BBH-3 and an adamantyl substituent in BBH-4, affect binding conformation and active site adaptability. Comparative structural analyses with previously characterized inhibitors, including BBH-2 and Mcule-5948770040, reveal how the P2 bulkiness and electronic properties influence active site dynamics, particularly through interactions with the S2 and S5 subsites. The P2 group of BBH-3 induces conformational shifts in the S2 helix and the S5 loop, while BBH-4 displaces M49, stabilizing its binding through hydrophobic interactions. Isothermal titration calorimetry further elucidates the impact of P2 modifications on inhibitor affinity, revealing a delicate balance between enthalpic and entropic contributions. The data demonstrate that BBH-3 exhibits less favorable binding, affirming that dichlorobenzyl substitution at the P2 position has a more negative impact on the affinity for MPro than bulky saturated cyclic groups. This underscores the feature that MPro active site malleability may be accompanied by a conformational strain.