Skip to main content
SHARE
Publication

Influence of the low order rational q surfaces on the pellet deposition profile...

Publication Type
Journal
Journal Name
Nuclear Fusion
Publication Date
Page Number
025011
Volume
50
Issue
2

Pellet injection is planned to be the main fuelling method on ITER. The high temperature of the plasma during a fusion burn will limit the penetration of the pellet to the outer third of the minor radius. This limited penetration is expected to be compensated by a polarization drift, which will deposit the particles deeper in the plasma for the pellets injected from the high field side. In order to evaluate the expected depth of the fuelling on ITER, a good understanding of this drift effect is important. Experimental data acquired on the DIII-D (USA) and Tore Supra (France) tokamaks show that the polarization drift is influenced by the low order rational q surfaces. These surfaces appear to attenuate the polarization mechanism as the drifting particles cross them. In this paper, a correlation between the maximum of the pellet mass deposition profile and the positions of the q = 2 and q = 3 surfaces on DIII-D and Tore Supra is shown for high field side and low field side injection. A model is proposed to explain this effect and compared with the experimental results. To conclude, the possible consequences of this phenomenon on the fuelling in ITER are described.