Publication Type
Journal
Journal Name
Nano Research
Publication Date
Page Numbers
722 to 730
Volume
11
Issue
2
Abstract
In this study, high-performance multilayer WSe2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe2 thickness. The carrier type evolves with increasing WSe2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ∼4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe2 as a function of the thickness and the carrier band offsets relative to the metal contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. This work demonstrates progress towards the realization of high-performance multilayer WSe2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.