Skip to main content
SHARE
Publication

An adaptive integration scheme for heat conduction in additive manufacturing...

by Benjamin C Stump, Alexander J Plotkowski
Publication Type
Journal
Journal Name
Applied Mathematical Modelling
Publication Date
Page Numbers
787 to 805
Volume
75

Solidification dynamics are important for determining final microstructure in additively manufactured parts. Recently, researchers have adopted semi-analytical approaches for predicting heat conduction effects at length and time scales not accessible to complex multi-physics numerical models. The present work focuses on improving a semi-analytical heat conduction model for additive manufacturing by designing an adaptive integration technique. The proposed scheme considers material properties, process conditions, and the inherent physical behavior of the transient heat conduction around both stationary and moving heat sources. Both the adaptive integration scheme and a technique for calculating only the points within the melt pools are described in detail. The full algorithm is then implemented and compared against a simple Riemann sum integration scheme for a variety of cases that highlight process and material variations relevant to additive manufacturing. The new scheme is shown to have significant improvements in computational efficiency, solution accuracy, and usability.