For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For his seminal work on elucidating key molecular-scale mechanisms that govern biogeochemical transformation of contaminants, trace metals, and natural organic matter, which has made significant contributions to the understanding of natural organic and metal cycling in terrestrial ecosystems and remediation of contaminated sites, and also for his contributions to the development of the next generation of scientists and engineers.
For pioneering advances in the field of materials chemistry for the design, synthesis and fabrication of new materials and their translation into new energy technologies, including superconductor wires, electrodes for batteries, solar cells, lithium extraction from geothermal brine and additive manufacturing of magnets, and also for his leadership in developing the next generation of scientists and engineers.
For contributions to advanced control systems for nuclear reactor, including development of control-system and plant protection technologies that permit automated start-up and operation; and to analysis techniques that have led to better understanding of reactor dynamics.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.