Jerry is recognized for distinguished research on the genetic basis of tree growth and development, including leading the international efforts to sequence, assemble, and annotate the genomes of poplar and eucalyptus bioenergy feedstocks.
For environmental-effects research related to energy technologies and their use, focusing on the impacts of climate and atmospheric changes on the physiology, growth, and biogeochemical cycles of North American forest ecosystems.
For internationally recognized contributions in distributed and cluster computing, including the development of the Parallel Virtual Machine and the Message Passing Interface standard now widely used in science to solve computational problems in biology, physics, chemistry, and materials science.
For leadership in the development of high-temperature materials for energy and space applications, based on innovative use of physical metallurgy principles and basic physics knowledge to understand crystal structures and the mechanical properties of structural materials.
For application of chemical and engineering principles to the development of nuclear fuel processing; separation science and technology; and innovative biomedical and bioprocessing concepts for environmental protection, energy production and conservation, and resource recovery