Skip to main content

Wavelength-resolved Neutron Tomography for Crystalline Materials...

by Singanallur V Venkatakrishnan, Luc L Dessieux, Philip R Bingham
Publication Type
Conference Paper
Journal Name
IEEE International Conference on Acoustics Speech and Signal Processing
Publication Date
Page Numbers
7700 to 7704
Conference Name
International Conference on Acoustics Speech and Signal Processing (ICASSP 2019)
Conference Location
Brighton, United Kingdom
Conference Sponsor
Conference Date

Wavelength-resolved (WR) neutron transmission tomography is an emerging technique to characterize engineering materials. While tomographic reconstruction for amorphous samples is straightforward, it is challenging to reconstruct samples with single-crystal domains because the attenuation of the sample varies as a function of its orientation with respect to the incident beam due to Bragg scattering. In this paper, we present an algorithm that can reconstruct samples with single-crystal domains from WR neutron tomographic measurements. In particular, we use a model-based iterative reconstruction (MBIR) technique that reconstructs the volume by identifying and leaving out the regions of the measurement that are affected by Bragg scatter. We combine the output of the MBIR method with an algorithm that matches the reconstruction to the identified Bragg scatter to reconstruct a feature that corresponds to the local crystallography of the sample being measured. Using simulated data, we demonstrate how our algorithm can reconstruct materials with single-crystal domains, thereby adding a powerful new capability for WR neutron imaging instruments.