Skip to main content
SHARE
Publication

Understanding the Structure and Dynamics of Complex Biomembrane Interactions by Neutron Scattering Techniques...

by Shuo Qian, Veerendra Kumar K Sharma, Luke A Clifton
Publication Type
Journal
Journal Name
Langmuir
Publication Date
Page Numbers
15189 to 15211
Volume
36
Issue
50

The membrane is one of the key structural materials of biology at the cellular level. Composed predominantly of a bilayer of lipids with embedded and bound proteins, it defines the boundaries of the cell and many organelles essential to life and therefore is involved in almost all biological processes. Membrane-specific interactions, such as drug binding to a membrane receptor or the interactions of an antimicrobial compound with the lipid matrix of a pathogen membrane, are of interest across the scientific disciplines. Herein we present a review, aimed at nonexperts, of the major neutron scattering techniques used in membrane studies: small-angle neutron scattering, neutron membrane diffraction, neutron reflectometry, quasielastic neutron scattering, and neutron spin echo. Neutron scattering techniques are well suited to studying biological membranes. The nondestructive nature of cold neutrons means that samples can be measured for long periods without fear of beam damage from ultraviolet, electron, or X-ray radiation, and neutron beams are highly penetrating, thus offering flexibility in samples and sample environments. Most important is the strong difference in neutron scattering lengths between the two most abundant forms of hydrogen, protium and deuterium. Changing the relative amounts of protium/deuterium in a sample allows the production of a series of neutron scattering data sets, enabling the observation of differing components within complex membrane architectures. This approach can be as simple as using the naturally occurring neutron contrast between different biomolecules to study components in a complex by changing the solution H2O/D2O ratio or as complex as selectively labeling individual components with hydrogen isotopes. This review presents an overview of each experimental technique with the neutron instrument configuration, related sample preparation and sample environment, and data analysis, highlighted by a special emphasis on using prominent neutron contrast to understand structure and dynamics. This review gives researchers a practical introduction to the often enigmatic suite of neutron beamlines, thereby lowering the barrier to taking advantage of these large-facility techniques to achieve new understandings of membranes and their interactions with other molecules.