Abstract
Reinforcement learning (RL) is a powerful tool that has shown promising results in many domains such as robotics and game-playing. Because RL algorithms learn optimal control policies by continuously interacting with their environments, these algorithms require a lot of data to learn, which limits their application to a wide range of domains. For this reason, there is an immense need for improving the training and data efficiency of RL. Towards addressing this research gap, this paper proposes a transfer learning (TL) approach to improve the efficiency of the RL algorithms by reducing data need and, thus, reducing training time. To demonstrate the proposed approach, a knowledge transfer from a set of buildings to another building was conducted. The results show that the proposed TL approach is a promising method that can efficiently harness the information from similar RL tasks and reduce the data needs of RL algorithms.