Skip to main content

Thermohydraulic Design Analysis of the Target Assembly in the Material Plasma Exposure Experiment Facility...

by Adrian Sabau, Muhammad A Hussain, Federico G Gallo, Adam M Aaron
Publication Type
Journal Name
Fusion Science and Technology
Publication Date
Page Numbers
1 to 29

The Material Plasma Exposure eXperiment (MPEX) project seeks to design a steady-state linear plasma facility at Oak Ridge National Laboratory that will be used to study plasma-material interactions (PMIs) at fusion prototypic levels, supporting the evaluation and development of materials for the next generation of fusion devices. This study is focused on PMI exposure of small-size neutron-irradiated specimens, which are clamped onto an actively cooled component. A thermohydraulic evaluation of a new MPEX target assembly design to assess the appropriate operation during MPEX operation is presented. To further guide the design and assess the structural integrity of the components under expected loads, preliminary thermomechanical stress analyses were also conducted. To ensure good thermal contact between the components, thermal interface materials, such as silver flexible graphite, were used in the assembly.

It was found that the maximum target temperatures of 1572, 1463, and 1315 K were obtained for Grafoil thicknesses of 0.61, 0.38, and 0.25 mm, respectively. The distribution of the axial deformation at high heat fluxes showed that there are no gaps between components, indicating good contact at material interfaces. Moreover, the contact pressure between the target and other components indicated that very good contact was established at these interfaces. The stress-strain conditions for the target will be further used to assess the appropriate operation during MPEX experiments and gain insight into materials science phenomena during PMI experiments.