Skip to main content
SHARE
Publication

Thermal conductivity of InN with point defects from first principles...

by Carlos A Polanco, Lucas R Lindsay
Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Page Number
014306
Volume
98
Issue
1

We present ab initio calculations of thermal conductivity of InN with vacancies and substitutional defects using a full solution of the Peierls-Boltzmann transport equation. Our parameter-free calculations are in good agreement with experimental measurements demonstrating the predictive power of this approach. Phonon-defect scattering rates are computed from a Green's function methodology that is nonperturbative and includes interatomic force constant variance induced near the defects. Restricting calculations to first-order perturbation approaches can overestimate optic phonon scattering rates by nearly three orders of magnitude. On the other hand, neglecting the force variance weakens the scattering rates by about an order of magnitude, mostly in the low-frequency region below 2 THz. This work elucidates important properties of phonon-defect scattering in thermal transport and demonstrates the predictive power of the coupling of Peierls-Boltzmann transport, Green's function methods, and density functional theory.