Skip to main content
SHARE
Publication

Structural Analysis of the US ITER ECH Transmission Line System...

by Aravind Shanmugasundaram, Kevin D Freudenberg, Michael C Kaufman, Robert L Myatt, Kristine B Cochran
Publication Type
Conference Paper
Journal Name
Fusion Science and Technology
Publication Date
Page Numbers
582 to 593
Volume
77
Issue
7-8
Conference Name
24th Topical Meeting on the Technology of Fusion Energy (TOFE)
Conference Location
Chicago, Illinois, United States of America
Conference Sponsor
American Nuclear Society
Conference Date
-

The electron cyclotron heating (ECH) and current drive system is one of the main plasma heating systems for ITER. It uses high-power microwave beams with the power deposition location steerable across the plasma cross section. Microwave power is conveyed via transmission lines (TLs) that run from the gyrotrons in the radio frequency building through the assembly hall and tokamak building to the ECH launchers within the tokamak vacuum vessel. The ECH system includes a vast array of interconnected TL waveguides, in-line components, and support structures.

Finite element (FE) modeling provides an essential means of simulating the system, applying loads and determining deflections, rotations, forces, moments, and stresses in order to evaluate various structural and microwave transmission performance metrics. A representative FE model of the overall ECH TL system is developed in ANSYS®. This top-level model defines the centerline of the waveguide system. Waveguide segments are represented by line elements (beams and pipes) with equivalent section properties, and support structures are represented by boundary conditions. A systematic approach is used to model each ECH component with lumped masses and structurally equivalent stiffness matrices or ANSYS superelements.

The top-level TL FE model is used to evaluate the various loads (thermal, vacuum, seismic, etc.) and operating scenarios. The top-level model directly calculates stresses in the straight aluminum waveguide segments. The model provides the forces and moments acting on the in-line components for detailed submodel assessments. Displacement results from the top-level analysis feed into a separate microwave performance model to help determine operational efficiency. All TL performance and thermal-structural requirements are met, as specified by the applicable codes and standards, and successfully documented in numerous technical reports and demonstrated at the final design review.