Skip to main content
SHARE
Publication

Stacking Fault Induced Symmetry Breaking in van der Waals Nanowires...

by Eli Sutter, Hannu-pekka Komsa, Alexander A Puretzky, Raymond R Unocic, Peter Sutter
Publication Type
Journal
Journal Name
ACS Nano
Publication Date
Page Numbers
21199 to 21207
Volume
16
Issue
12

While traditional ferroelectrics are based on polar crystals in bulk or thin film form, two-dimensional and layered materials can support mechanisms for symmetry breaking between centrosymmetric building blocks, e.g., by creating low-symmetry interfaces in van der Waals stacks. Here, we introduce an approach toward symmetry breaking in van der Waals crystals that relies on the spontaneous incorporation of stacking faults in a nonpolar bulk layer sequence. The concept is realized in nanowires consisting of Se-rich group IV monochalcogenide (GeSe1–xSx) alloys, obtained by vapor–liquid–solid growth. The single crystalline wires adopt a layered structure in which the nonpolar A-B bulk stacking along the nanowire axis is interrupted by single-layer stacking faults with local A-A′ stacking. Density functional theory explains this behavior by a reduced stacking fault formation energy in GeSe (or Se-rich GeSe1–xSx alloys). Computations demonstrate that, similar to monochalcogenide monolayers, the inserted A-layers should show a spontaneous electric polarization with a switching barrier consistent with a Curie temperature above room temperature. Second-harmonic generation signals are consistent with a variable density of stacking faults along the wires. Our results point to possible routes for designing ferroelectrics via the layer stacking in van der Waals crystals.