Skip to main content

Role of surface wetting on tribological behavior for laser nanotextured steel using ionic liquid lubricants...

Publication Type
Journal Name
Journal of Manufacturing Processes
Publication Date
Page Numbers
302 to 311

This research evaluates the effect of surface wettability on the tribological performance through ball-on-flat tribology testing. The substrate material, M2 tool steel, is laser processed and then functionalized with fluorocarbon and nitrile chemistry to achieve distinct oleophobicity and oleophilicity, respectively, but with a similar nanoscale surface texture. The baseline lubricant is poly-alpha-olefin (PAO) oil, and ionic liquids (ILs) are used as additives for this study. The interaction between the nanoscale textured steel surface and ionic liquid-based oils is investigated. A set of reciprocating wear tests are performed to investigate the tribological behavior of the tribo-system consisting of the surface-engineered, flat M2 tool steel specimen and a standard, surface-polished steel ball. Results show that the oleophobic flat surface results in a lower friction, while the oleophilic surface modification leads to a better wear protection to the flat surface. Ammonium-based IL provides the highest friction reduction, while the phosphonium-based ILs provide an improved wear protection.