Abstract
This study employs neutron diffraction to investigate the relationship between residual stress and coating thickness in cold sprayed 304L austenitic stainless steel. Results show that shot peening predominantly impacts the residual stress profile, leading to substantial in-plane compressive force. The impact of laser heating, a widely used method to alter cold spray's microstructural properties, on the coating's residual stress is also analyzed. The findings indicate that the maximum compressive residual stress in the in-plane component is mainly independent of coating thickness, which suggests that the material properties determine the maximum residual stress. The cold sprayed deposits possessed compressive, nearly biaxial strain and stresses. After laser heating, these stresses were replaced by tensile residual stresses. Two analytical models, the Tsui and Clyne and the Boruah models, for predicting residual stresses are also evaluated, and both models provide reasonable fits to the experimental data. At this point, the deviations between the experimental results and the models are principally caused by the inability of the current models to address plastic deformation and relaxation, and the residual stresses generated by thermal gradients.