Abstract
The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta− emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.