Skip to main content
SHARE
Publication

Phosgene...

by Cheryl B Bast, Dana F Glass-mattie
Publication Type
Book Chapter
Publication Date
Page Numbers
321 to 330
Publisher Name
Academic Press/Elsevier
Publisher Location
London, United Kingdom

Inhalation is the most important route of exposure for phosgene. A latency period occurs before phosgene affects the target organ, the lungs. The odor threshold is between 0.5 and 1.5 ppm, and the odor has been described as similar to newly-mown hay. Toxic effects have been reported at concentrations below the threshold. On initial exposure, phosgene can undergo hydrolysis and form hydrogen chloride which can be slightly irritating to the upper respiratory tract and eyes; the amount formed is limited by the low water solubility of phosgene. Once inhaled to the lower respiratory tract, phosgene undergoes an acylation reaction with amino, hydroxyl and sulfhydryl groups causing destruction of protein, lipids, and disruption of cellular functions. In response to this destruction, after a latency period of 1-24 hours, a breakdown in the blood-air barrier occurs and protein rich fluid accumulates in the lungs. Most commonly, death occurs within 48 hours after exposure from a progressive pulmonary edema and anoxia. At very high concentrations, death can occur from acute heart failure prior to the start of the pulmonary edema.
Data on humans are limited to occupational exposures or accounts from the use of phosgene in World War I. Animal studies with phosgene show a steep dose-response curve for pulmonary edema and mortality. Animal studies also indicate little species variability as all species exposed developed similar clinical signs (dyspnea, pulmonary edema, labored breathing) and histopathological lesions in the lungs. While there are no chronic animal data, subchronic studies indicate little accumulation of phosgene or increased severity of lesions with continuous exposure.