Skip to main content
SHARE
Publication

PERKS: a Locality-Optimized Execution Model for Iterative Memory-bound GPU Applications

Publication Type
Conference Paper
Book Title
ICS '23: Proceedings of the 37th International Conference on Supercomputing
Publication Date
Page Numbers
167 to 179
Issue
1
Publisher Location
New York, New York, United States of America
Conference Name
International Conference on Supercomputing (ICS)
Conference Location
Orlando, Florida, United States of America
Conference Sponsor
ACM
Conference Date
-

Iterative memory-bound solvers commonly occur in HPC codes. Typical GPU implementations have a loop on the host side that invokes the GPU kernel as much as time/algorithm steps there are. The termination of each kernel implicitly acts the barrier required after advancing the solution every time step. We propose an execution model for running memory-bound iterative GPU kernels: PERsistent KernelS (PERKS). In this model, the time loop is moved inside persistent kernel, and device-wide barriers are used for synchronization. We then reduce the traffic to device memory by caching subset of the output in each time step in the unused registers and shared memory. PERKS can be generalized to any iterative solver: they largely independent of the solver's implementation. We explain the design principle of PERKS and demonstrate effectiveness of PERKS for a wide range of iterative 2D/3D stencil benchmarks (geomean speedup of 2.12x for 2D stencils and 1.24x for 3D stencils over state-of-art libraries), and a Krylov subspace conjugate gradient solver (geomean speedup of 4.86x in smaller SpMV datasets from SuiteSparse and 1.43x in larger SpMV datasets over a state-of-art library). All PERKS-based implementations available at: https://github.com/neozhang307/PERKS.