Abstract
Performance of a novel gas-driven, electricity-producing heating, ventilation, and air conditioning (HVAC) system with no vapor compression and no hydrofluorocarbon (HFC) refrigerant shall be discussed in the paper. The prototype was evaluated at ORNL under a Small Business Voucher (SBV) Cooperative Research and Development (CRADA) program. The target market is commercial buildings in the United States. The goal is to mitigate or eliminate grid-power for building air conditioning, coincident peak demand and associated spinning reserves, aiding in flattening of the “duck curve”. The technical goal is to transform the common packaged rooftop unit into a cost-effective distributed energy resource, opening a new range of small applications and broad markets for micro-combined cycle cooling, heating, and power with integral thermal energy storage. The test results indicate the prototype would be competitive with natural gas distributed power plants with average electrical production ranging from 45% to 60% natural gas to electricity conversion efficiency. The technology has a Primary Energy Savings Potential of 4.4 Quads, higher than any other air conditioning and heating technology.