Abstract
Physical properties of liquids and glasses are controlled not only by the short-range order (SRO) in the nearest-neighbor atoms but also by the medium-range order (MRO) observed for atoms beyond the nearest neighbors. In this article the nature of the MRO as the descriptor of point-to-set atomic correlation is discussed focusing on simple liquids, such as metallic liquids. Through the results of x-ray diffraction and simulation with classical potentials we show that the third peak of the pair-distribution function, which describes the MRO, shows a distinct change in temperature dependence at the glass transition, whereas the first peak, which represents the SRO, changes smoothly through the glass transition. The result suggests that the glass transition is induced by the freezing of the MRO rather than that of the SRO, implying a major role of the MRO on the viscosity of supercooled liquid.