Skip to main content
SHARE
Publication

Magnon damping and mode softening in quantum double-exchange ferromagnets

Publication Type
Journal
Journal Name
Physical Review
Publication Date
Page Number
068001
Volume
88
Issue
2025

We present a comprehensive analysis of the magnetic excitations and electronic properties of fully quantum double-exchange ferromagnets, i.e. systems where ferromagnetic (FM) ordering emerges from the competition between spin, charge, and orbital degrees of freedom, but without the canonical approximation of using classical localized spins. Specifically, we investigate spin excitations within the Kondo lattice-like model, as well as a two-orbital Hubbard Hamiltonian in proximity to the orbital-selective Mott phase. Computational analysis of the magnon dispersion, damping, and spectral weight within these models reveals unexpected phenomena, such as magnon mode softening and the anomalous decoherence of magnetic excitations as observed in earlier experimental efforts, but explained here without the use of the phononic degrees of freedom. We show that these effects are intrinsically linked to incoherent spectral features near the Fermi level, which arise due to the quantum nature of the local (on-site) triplets. This incoherent spectrum leads to a Stoner-like continuum on which spin excitations scatter, governing magnon lifetime and strongly influencing the dynamical spin structure factor. Our study explores the transition from coherent to incoherent magnon spectra by varying the electron density. Furthermore, we demonstrate that the magnitude of the localized spin mitigates decoherence by suppressing the incoherent spectral contributions near the Fermi level. We also discuss the effective J1–J2 spin Hamiltonian, which can accurately describe the large doping region characterized by the magnon-mode softening. Finally, we show that this behavior is also present in multiorbital models with partially filled orbitals, namely, in systems without localized spin moments, provided that the model is in a strong coupling regime. Our results potentially have far-reaching implications for understanding FM ordering in various multi-band systems. These findings establish a previously unknown direct connection between the electronic correlations of those materials and spin excitations.