Skip to main content
SHARE
Publication

Machine learning 3D-resolved prediction of electrolyte infiltration in battery porous electrodes...

Publication Type
Journal
Journal Name
Journal of Power Sources
Publication Date
Page Number
230384
Volume
511

Electrolyte infiltration is one of the critical steps of the manufacturing process of lithium ion batteries (LIB). We present here an innovative machine learning (ML) model, based on the multi-layers perceptron (MLP) approach, to fast and accurately predict electrolyte flow in three dimensions, as well as wetting degree and time for LIB electrodes. The ML model is trained on a database generated using a 3D-resolved physical model based on the Lattice Boltzmann Method (LBM) and a NMC electrode mesostructure obtained by X-ray micro-computer tomography. The trained ML model is able to predict the electrode filling process, with ultralow computational cost and with high accuracy. Also, systematic sensitivity analysis was carried out to unravel the spatial relationship between electrode mesostructure parameters and predicted infiltration process characteristics. This paves the way towards massive computational screening of electrode mesostructures/electrolyte pairs to unravel their impact on the cell wetting and optimize the infiltration conditions.