Abstract
Understanding structural properties of materials and how they relate to its atomic structure, while extremely challenging, is a key scientific quest that has dominated the landscape of materials research for decades. Neutron and X-ray scattering is a state-of-the-art method to investigate material structure on the atomic scale. Traditional methods of processing neutron scattering data to decipher the structure of target materials have relied on computing scattering patterns using physics-based forward models and comparing them with experimentally gathered scattering profiles within a computationally expensive optimization loop. Here, we report an initial design of a data-driven machine learning pipeline for material structure prediction that is computationally faster (once trained) and potentially more accurate. We describe the architecture of the ML pipeline and a preliminary benchmarking study of shallow machine learning models in terms of their prediction accuracy and limitations. We show that material structure prediction from neutron scattering data using shallow learning models is feasible to within 90% prediction accuracy for certain classes of materials but deeper models are required for more general material structure predictions.