Skip to main content

Enabling a novel approach to a controlled fabrication of 1D crystalline nanowires on suspended microstructures of arbitrary g...

Publication Type
Journal Name
Materials Today Nano
Publication Date
Page Number

Recent progresses in additive manufacturing have inspired new technologies, such as direct laser writing technique, based on two-photon polymerization (2 PP), which complements and further enriches the nanofabrication tools portfolio. In this work, we combine 2 PP and our mask-free scanning probe assisted ‘direct-write patterning’ (DWP) method to allow for: a) the fabrication of micro-bridge structures with sub-micrometer resolution, b) selective synthesis of crystalline ZnO nanowires at predefined locations, respectively. This synergistic approach enables cantilever probe patterning of catalysts directly on suspended micro-bridges for in-situ CVD growth of nanoscale material, in a templated manner. The study reported here represents the first proof-of-concept experiments demonstrating versatile and scalable methodology, which can be applied and straightforwardly extended to grow a variety of other nanomaterials, in a controlled and selective fashion, on freestanding micro/nanoscale structures, whose size and geometry can be conveniently varied via templating of sacrificial 2 PP polymeric scaffolds. Finally, the demonstration of the possibility to integrate this new approach with the conventional lithography techniques provides a step forward to the development of the novel class of hybrid polymer-silicon-1D or -2D materials, and systems. The quality of the produced ZnO nanowire assemblies was assessed using several physical characterization methods.