Skip to main content
SHARE
Publication

Effective of Monomer Sequence, Composition and Chemical Heterogeneity on Copolymer-Mediated Effective Interactions between Na...

by Lisa M Hall, Kenneth S Schweizer
Publication Type
Journal
Journal Name
Macromolecules
Publication Date
Page Number
10.1021
Volume
n/a

The microscopic polymer reference interaction site model theory is applied to study the structural correlations of dilute spherical nanoparticles dissolved in AB copolymer melts of variable architecture (alternating, random), composition, and monomernanoparticle adsorption strengths that span the depletion, steric stabilization, and bridging regimes. Comparison of the calculations of the monomerparticle pair correlations and polymer-mediated nanoparticle potential of mean force (PMF) with the behavior of reference homopolymers and a binary AB blend are also performed. All intermonomer potentials are hard core, which precludes polymer macrophase or microphase separation, thereby allowing the consequences of differential monomer wettability on nanoparticle spatial organization to be isolated. For each copolymer case, one monomer species adsorbs more strongly on the filler than the other, mimicking a specific attraction. The PMF for the alternating copolymer is similar to that of an analogous homopolymer with additional spatial modulation or layering features. Random copolymers, and the polymer blend, mediate a novel strong and spatially long-range
attractive bridging type interaction between nanoparticles at moderate to high adsorption strengths. The depth of this attraction in the PMF is a nonmonotonic function of random copolymer composition, reflecting subtle competing enthalpic and entropic considerations. Virial-based estimates of the maximum solubility of nanoparticles are computed.