Skip to main content

Directive-Based, High-Level Programming and Optimizations for High-Performance Computing with FPGAs...

by Jacob Lambert, Seyong Lee, Jungwon Kim, Jeffrey S Vetter, Allen Malony
Publication Type
Conference Paper
Journal Name
ACM Digital Library
Publication Date
Conference Name
ACM International Conference on Supercomputing (ICS)
Conference Location
Beijing, China
Conference Sponsor
Conference Date

Reconfigurable architectures like Field Programmable Gate Arrays (FPGAs) have been used for accelerating computations from several domains because of their unique combination of flexibility, performance, and power efficiency. However, FPGAs have not been widely used for high-performance computing, primarily because of their programming complexity and difficulties in optimizing performance. In this paper, we present a directive-based, high-level optimization framework for high-performance computing with FPGAs, built on top of an OpenACC-to-FPGA translation framework called OpenARC. We propose directive extensions and correspond- ing compile-time optimization techniques to enable the compiler to generate more efficient FPGA hardware configuration files. Empirical evaluation of the proposed framework on an Intel Stratix V with five OpenACC benchmarks from various application domains shows that FPGA-specific optimizations can lead to significant increases in performance across all tested applications. We also demonstrate that applying these high-level directive-based optimizations can allow OpenACC applications to perform similarly to lower-level OpenCL applications with hand-written FPGA-specific optimizations, and offer runtime and power performance benefits compared to CPUs and GPUs.