Skip to main content
SHARE
Publication

Development of activity–descriptor relationships for supported metal ion hydrogenation catalysts on silica

Publication Type
Journal
Journal Name
Polyhedron
Publication Date
Page Numbers
73 to 83
Volume
152

Single-site heterogeneous catalysts receive increasing attention due to their unique catalytic properties and well-defined active sites. We report a combined computational and experimental study on a series of silica-supported metal ion hydrogenation catalysts (i.e., In3+, Ga3+, Zn2+, Mn2+, and Ti4+/SiO2). These catalysts were synthesized, characterized, and evaluated for gas-phase propylene hydrogenation. Computational studies were carried out on active-site structures and reaction mechanisms. An activity–descriptor relationship was established, which correlates a computational quantity (reaction free energy of the metal hydride formation) with the experimental reaction rate, as a function of the metal. Microkinetic modeling provided qualitative kinetic insights into the activity–descriptor relationship. This relationship was used to predict the trend of activities in a variety of M/SiO2 catalysts. These fundamental studies and the developed activity–descriptor relationship open up new opportunities for rational design of hydrogenation catalysts.