Publication Type
Journal
Journal Name
Scripta Materialia
Publication Date
Page Numbers
295 to 300
Volume
178
Issue
N.A.
Abstract
High strain-hardening rates in equiatomic CrCoNi and other multi-principal element alloys have been attributed to deformation twinning. This work shows that small additions of Al and Ti to a CrCoNi alloy deactivate deformation twinning with only minor changes to uniform elongation and ultimate tensile strength. The initial microstructure is free of chemically ordered (Al,Ti)-rich precipitates after solutionizing and quenching. Tensile properties for the alloy are reported and compared to equiatomic CrCoNi, and the post-deformation microstructure is assessed. Density functional theory calculations indicate that energetically unfavorable Al-Al bonds may discourage shearing via partial dislocations, which are necessary for twinning to occur.